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The radial Navier–Stokes flow in a fracture bounded by impermeable corrugated
rock surfaces is significantly different from the commonly used creeping flow
model between two parallel surfaces, described by Darcy’s law on the macroscale.
Continuous variations in the Reynolds number along the radial coordinate determine
the important role of the nonlinear inertial effects, which are reinforced by local
oscillations of the velocity field caused by wall corrugation. The system behaviour is
studied both analytically and numerically. A solution for the full system of Navier–
Stokes equations in a thin cylindrical domain with oscillating walls is developed as
a biparametric and two-scale asymptotic expansion with respect to fracture aperture
and corrugation period. The numerical solution is derived based on the finite volume
method. A new macroscale flow equation is obtained, which explicitly displays the
relative roles of viscous dissipation caused by corrugation, local and global inertia,
and cross inertia–viscous effects. The effective flow parameters are defined using
analytical relationships.

1. Introduction
Various problems in hydrogeology, petroleum engineering and underground waste

deposits concern radial flow through a thin fracture. The most important scientific
problem here consists in studying the effective properties of the flow.

At first glance, the examined flow would seem to be very similar to two cases that
have been studied in depth in the literature. These are the plane-parallel flow between
two parallel plates, and the radial flow in a two-dimension diverging/converging cone
with a rather small angle of aperture (Savage 1963; Iwai 1976; Landau & Lifshitz
1986; Zimmerman & Bodvarsson 1996). However, this similarity is only apparent.

Two basic phenomena significantly differentiate the radial flow in a cylindrical
fracture from other known similar flow cases. First, the variation in the Reynolds
number along the radius as far as to infinity at the fracture centre requires that we
use the complete Navier–Stokes system of equations with an important contribution
of nonlinear inertia terms. This is in sharp contrast to the plane-parallel flow. On the
other hand, this property is similar to that of flow in a diverging/converging cone.
However the similarity stops here.

In sharp contrast to the diverging/converging flow which possesses a one-
dimensional exact radial solution, purely radial Navier–Stokes flow between two
parallel disks does not exist, due to inertia effects, as shown in Peube (1963). Hence
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Figure 1. Geometry of a corrugated radial fracture.

the flow in such a fracture is always two- or three-dimensional. The continuous
flow acceleration directed towards the centre deforms the streamlines by pressing
them to the middle plane of the fracture. This leads both to variations in the total
viscous dissipation and to the appearance of further two-dimension inertia effects.
This a priori reasoning means that we may expect the macroscale behaviour of
radial flow not to obey Darcy’s law. Moreover, it cannot be modelled by the flow
in a diverging/converging slot. The existence of wall corrugation will enhance this
difference.

The influence of roughness/corrugation in a thin fracture was examined in detail
in Adler & Thovert (1999), based on the Stokes equations for plane-parallel flow.
Flow in a cylindrical slot was examined only in the case of smooth walls in Peube
(1963) where the two-dimensional Navier–Stokes equations were solved in the form
of a power series in 1/r . In Chen (1966) and Crosnier, Chevalier & Buès (2000)
experimental data were obtained. The important role of the macroscale inertia effects
was confirmed in the recent papers by Vatistas, Ghila & Zitouni (1995) and Zitouni
& Vatistas (1997). The effect of inertia upon the flow in a thin fracture was examined
in Skjetne, Hansen & Gudmundsson (1999) based on a numerical analysis. The
macroscale flow model was not derived as the radial fracture was not the subject
of the study. Another common approach to the study of rough fractures consists in
detecting empirical corrections to the mean fracture aperture (Iwai 1976; Renshaw
1995).

In this paper the solutions to Navier–Stokes equations and the averaged equation
for flow through a radial corrugated fracture are derived based on the asymptotic
method. Both the structure of the effective permeability and the nonlinear correction
to Darcy’s law are obtained as functions of the corrugation geometry. Two classes of
non-linear terms are distinguished. They are generated both by pure inertia effects
and by cross inertia–viscous phenomena. The former are quadratic with respect to
velocity, while the latter are cubic. To calculate all the macroscale parameters, the
analytical relationships are derived using the analysis of sinusoidal and rectangular
corrugations.

2. Formulation of the problem
2.1. Fracture geometry

Let (R, θ, Z) be the radial coordinates. Let ϕ̃ = ϕ̃(R) be the periodic function with
period l and with the average equal to 1/2. A fracture is the cylindrical domain
F̃ = {−Hϕ̃ < Z < Hϕ̃, Rin <R <Rout} shown in figure 1. We assume that Rin > 0 and
Rout < ∞. A half of this domain will be used, which is designated as F = {0 < z < ϕ,

Rin/R
out <r < 1} where the following dimensionless variables are introduced:
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r = R/Rout, z = Z/H and ϕ(r) = ϕ̃(R)|R=rRout . If ϕ =const= 1/2 then the fracture walls
are two flat disks.

2.2. Flow equations and boundary conditions

Let us examine the flow of an incompressible fluid of density ρ and viscosity µ in
domain F . For the sake of clarity, the flow is assumed to be directed from the disk
centre, i.e. from Rin to Rout. The anglular component of the flow velocity is assumed
to be zero. Hence the two-dimension Navier–Stokes equations are

Re

[
v
∂u

∂z
+ ωu

∂u

∂r

]
= −∂p

∂r
+

∂2u

∂z2
+ ω2 1

r

∂

∂r

(
r
∂u

∂r

)
− ω2 u

r2
, (2.1a)

ωRe

[
v
∂v

∂z
+ ωu

∂v

∂r

]
= −∂p

∂z
+ ω

∂2v

∂z2
+ ω3 1

r

∂

∂r

(
r
∂v

∂r

)
, (2.1b)

∂v

∂z
+ ω

1

r

∂(ru)

∂r
= 0, (2.1c)

where u =Vr/V 0, v = Vz/V 0, p = P/P 0, V 0 is the characteristic flow velocity, and
P 0 =µV 0Rout/H 2 is the characteristic fluid pressure.

Four dimensionless parameters define the process:

ω =
H

Rout
, ε =

l

Rout
, Re =

ρV 0H

µ
, δ =

Rin

Rout
, (2.2)

where Re is the Reynolds number. Usually, the flow rate, Q, is known instead of the
characteristic velocity. Then velocity V 0 can be specified as V 0 = Q/(2πHRout).

In this paper we develop a family of solutions, which correspond to no-slip
conditions at the fracture walls, symmetry conditions at the axis z = 0 and the
integral condition meaning a fixed flow rate:

u|z=ϕ = v|z=ϕ = 0,
∂u

∂z

∣∣∣∣
z=0

= v|z=0 = 0,

∫ ϕ(r)

0

ru(r, z) dz = 1
2
, ∀r. (2.3)

The last condition, being satisfied at a fixed radius, remains true for all other
radii, which follows immediately from the integration of (2.1c) over z and taking into
account the no-slip conditions.

2.3. Order of parameters and corrugation classes

The fracture aperture is assumed to be small with respect to the fracture radius:
0 < ω � 1. The Reynolds number is not limited, but the flow is assumed to be always
stable. More strictly speaking, we will assume that the turbulent zone is always located
outside domain F , at R < Rin. This imposes certain limits upon the simultaneous values
of parameters Re and δ, such that the following must hold: δ >Re/Recr , where Recr

is the critical Reynolds number marking the transition to turbulence. This inequality
also gives the upper limit for the Reynolds number at a fixed value of δ.

Parameters ω and ε are responsible for the non-homogeneity of the system along
axes z and r respectively. If ε → 0 then the fracture becomes smooth, hence the
velocity and pressure oscillations along r within a period are eliminated. If ω → 0
then the fracture becomes extremely thin, such that the velocity/pressure variation
along z becomes meaningless. Therefore we will call ω and ε the vertical and the
horizontal heterogeneity scales respectively. Note that the physical origin of these two
types of heterogeneity is different: vertical heterogeneity (of flow velocity) is caused
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Figure 2. Classes of corrugation.

by the different degree of friction between the domain in the vicinity of the walls
and in the flow centre. This kind of velocity heterogeneity does not entail any flow
acceleration along z. Horizontal heterogeneity is caused by the spatial oscillations of
the pore walls. This kind of heterogeneity gives rise to acceleration/deceleration and
inertia effects.

The macroscale, non-oscillating, behaviour is then obtained by a double integration
of the system along z over the entire height H (vertical homogenization) and along r

over one corrugation period l (horizontal homogenization).
Three distinct corrugation classes may be selected depending on the ratio between

parameters ω and ε (figure 2):

I – rare corrugation: ω � ε � 1; (2.4a)

II – frequent corrugation: ω ∼ ε; (2.4b)

III – fine-scale corrugation: ε � ω. (2.4c)

It is obvious that in the third case corrugation plays a local role and cannot
influence the flow structure overall. This case has been studied in Skjetne et al. (1999)
for plan-parallel flow.

In the first and second cases, corrugation could modify the entire flow structure.
The first case is preferable for the analysis, as the vertical and horizontal heterogeneity
scales are separate (i.e. very different). This enables the homogenization procedures
along z and along r to be separated, which becomes a powerful tool for theoretical
analysis. In the present paper, only the first case has been studied.

The corrugation amplitude is always limited by construction, so that min (ϕ) > 0.
Moreover, we will assume that the corrugation amplitude is no higher than the corrug-
ation period: H (max(ϕ) − min(ϕ)) � l. Using (2.2), we obtain (max(ϕ) − min(ϕ)) �
ε/ω. Otherwise, the corrugation amplitude should be examined as an additional large
parameter which could significantly modify the asymptotic expansion structure.
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3. Methods of solution
The method of solution consists in developing the asymptotic expansions at ω → 0

and ε → 0. At limit ε → 0 we will obtain a system that is homogenized along r . The
limit ω → 0 formally means elimination of the vertical variable z, which is close to
homogenization along z. Thus the zero term of the asymptotic expansion is expected
to be equal to an averaged value or to be close to it in some way. Hence the asymptotic
solution method is close to homogenization. Owing to the particularity of the method
used, the solutions obtained do not need to provide an exact detailed flow pattern,
but they are expected to exhibit adequate homogenized behaviour.

For case I in (2.4a), when the heterogeneity scales are separated, asymptotic
expansion can be performed in two consecutive steps.

3.1. Asymptotic expansions as ω → 0

In the first step, the parameter ε is considered as fixed and the solution to problem
(2.1)–(2.3) is constructed as a regular asymptotic expansion at ω → 0:

u(r, z; ω) = u0(r, z) + ωu1(r, z) + ω2. . . ,

v(r, z; ω) = v0(r, z) + ωv1(r, z) + ω2. . . ,

p(r, z; ω) = p0(r, z) + ωp1(r, z) + ω2. . . .


 (3.1)

As is usual for certain thin structures, such an asymptotic expansion should, in
the zero term, lead to functions averaged over the fracture aperture, or, at least, to
functions whose behaviour along z corresponds to the exact solution in the average
sense only.

Strictly speaking, (2.1) are singularly perturbed with respect to parameter ω. When
ω =0, the highest derivatives with respect to r are lost. This may be a cause of
boundary layer phenomena in the vicinity of the inlet or the outlet section of the
domain. Within the framework of our analysis, when the boundary conditions at
the inlet and the outlet are not examined, boundary layer effects may be neglected.
However, it must not be forgotten that this assumption reduces the family of con-
structed solutions.

3.2. Asymptotic expansion as ε → 0 and homogenization

The second step of the method consists in developing an ε-expansion. The expansion
obtained in previous sections will contain fast oscillating functions along r with a
small period ε. The expansion over ε should be performed in terms of a two-scale
asymptotic expansion. Instead of any function f (r, r/ε, z) we introduce a ‘two-scale
function’ f̃ (r, y, z), such that f̃ (r, y, z)|y=r/ε = f (r, r/ε, z), where y is the new ‘fast’
variable. Hence, for the derivative we obtain

∂f

∂r
=

∂f̃

∂r
+

1

ε

∂f̃

∂y
.

Such a two-scale asymptotic expansion is equivalent to a homogenization procedure.
In the case examined, when homogenization is not applied to a differential equation
but to an algebraic series, the homogenization procedure over ε is reduced to two
steps: (a) a reordering of the terms in the expansion at ω → 0, and (b) an integration
of this series over the fast variable y. This integration represents the averaging over
corrugations. We will also apply a second averaging, over the fracture aperture to a
flow through a narrow slot.

The full homogenized model can then be obtained by a double homogenization both
over the fracture aperture and over the radial wall corrugations. The homogenization
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over corrugations and double averaging for a two-scale function f̃ (r, y, z) are defined
as

〈f 〉 =

∫ 1

0

f̃ (r, y, z) dy, 〈〈f 〉〉 =

∫ 1

0

(
1

ϕ

∫ ϕ

0

f̃ (r, y, z) dz

)
dy. (3.2)

3.3. Numerical method

Simulations were carried out with the CFD-ACE package based on the finite volume
method. Structured Cartesian grids were generated. The grid refinement selected
was 1200–1500 grid cells in the horizontal direction and 20–50 cells in the vertical
direction, depending on the corrugation form (sinusoidal or rectangular), when ratio
H/Rout was of order 0.01. Contrary to the asymptotic method, the numerical analysis
requires all the boundary-value conditions to be clearly specified in order to define
a single solution. At the fracture inlet, the velocity profile has been defined either
as a constant, or as the Poiseuille distribution. A constant pressure distribution was
applied at the outlet. A particularly stable first-order numerical scheme was used for
the resolution. The SIMPLEC algorithm was used to calculate the pressure–velocity
coupling.

4. Asymptotic solution
4.1. Asymptotic expansions

Substituting expansion (3.1) into (2.1)–(2.3) we obtain a sequence of boundary-value
problems.

In the zero approximation, for u0, v0 and p0 we have

Re v0

∂u0

∂z
=

∂p0

∂r
+

∂2u0

∂z2
,

∂p0

∂z
= 0,

∂v0

∂z
= 0,

u0|z=ϕ = 0, v0|z=ϕ = 0,
∂u0

∂z

∣∣∣∣
z=0

= 0, v0|z=0 = 0,

∫ ϕ

0

ru0 dz = 1
2
.




(4.1)

This gives immediately v0 ≡ 0.
In the first approximation, for u1, v1 and p1 we have

Re

[
v1

∂u0

∂z
+ u0

∂u0

∂r

]
= −∂p1

∂r
+

∂2u1

∂z2
,

∂p1

∂z
= 0,

∂v1

∂z
= −1

r

∂(ru0)

∂r
,

u1|z=ϕ = 0, v1|z=ϕ = 0,
∂u1

∂z
|z=0 = 0, v1|z=0 = 0,

∫ ϕ

0

ru1 dz = 0.


 (4.2)

In the second approximation, for u2, v2 and p2 we have

Re

[
v2

∂u0

∂z
+ v1

∂u1

∂z
+

∂u0u1

∂r

]
= −∂p2

∂r
+

∂2u2

∂z2
+

1

r

∂

∂r

(
r
∂u0

∂r

)
− u0

r2
,

∂p2

∂z
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∂2v1

∂z2
,

∂v2

∂z
= −1

r

∂(ru1)

∂r
,

u2|z=ϕ = 0, v2|z=ϕ = 0,
∂u2

∂z
|z=0 = 0, v2|z=0 = 0,

∫ ϕ

0

ru2 dz = 0.




(4.3)
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4.2. Analytical solution to the asymptotic problems

Let us replace variables (r, z) to (r, η) with η = z/ϕ(r), such that for any function
f (r, z) the following is true:

f (r, z) = f̃ (r, η)|η=z/ϕ,
∂f

∂r
=

∂f̃

∂r
− ηϕ′

r

ϕ

∂f̃

∂η
,

∂f

∂z
=

1

ϕ

∂f̃

∂η
,

where ϕ′
r ≡ dϕ/dr .

Then all the differential equations in (4.1)–(4.3) may be explicitly integrated. We
thus obtain the following analytical solutions:

for problem (4.1)

u0 = − 3

4rϕ
(η2 − 1), v0 = 0,

∂p0

∂r
= − 3

2rϕ3
;

for problem (4.2)

u1 = − 3Re

1120

Φ0(r)

r
(η2 − 1)(5 − 28η2 + 7η4),

v1 =
3ϕ′

r

4rϕ
(η − η3),

∂p1

∂r
=

27Re

70

Φ0(r)

rϕ2
;

for problem (4.3)

u2 =
9Re2

4480

{
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[
4111
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6
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34
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4
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7

90
(η10 − 1)

]
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[
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1155
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5

6
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15
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1

4
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45
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]}

+
3

40
Φ3(r)(η

2 − 1)(5η2 − 1),

v2 = − 3Re

1120
{Φ7(r)[5η − 11η3 + 7η5 − η7] − Φ8(r)[5η − 33η3 + 35η5 − 7η7]},

∂p2
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= −3

5
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70·385
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3
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Φ6(r)(1 − 3η2),
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rϕ
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1

r2
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rr
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− 2(ϕ′

r )
2
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(
ϕ′

r
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r
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Φ0ϕ
′

r
.

4.3. Asymptotic expansion as ε → 0

Let us now examine the expansion obtained in terms of the two-scale functions
defined in § 3.2 by introducing a new variable y = r/ε. We wish to underline that the
function ϕ depends on y only, and hence

ϕ′
r =

1

ε
ϕ′

y.
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A rearrangement of the series derived in the previous section thus leads to the
following final form of the asymptotics at ω, ε → 0 for problem (2.1)–(2.3):

u = − 3

4rϕ
(η2 − 1) − 3ωRe

1120ε
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(
ϕ′
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r2ϕ
+ ε

1
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+ ε2. . .
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)
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3
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+ O
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)
, (4.4a)

v = −3ω

4ε
(η3 − η)

ϕ′
y

rϕ

− 3ω2Re
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(ϕ′
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)
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}

+ O

(
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ε3
+ ωε

)
, (4.4b)
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3
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3
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ϕ′

y

r2ϕ2

[
−3
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7×385r5ϕ
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+ O

(
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ε3
+ ωε

)
,

(4.4c)

where

M1(η) = 7η6 − 35η4 + 33η2 − 5,

M2(η) =
4111

2310
(η2 − 1) − 19

6
(η4−1) +

34

15
(η6 − 1) − 3

4
(η8 − 1) +

7

90
(η10 − 1),

M3(η) = − 416

1155
(η2 − 1) +

5

6
(η4 − 1) − 11

15
(η6 − 1) +

1

4
(η8 − 1) − 1

45
(η10 − 1),

M4(η) = 5η4 − 6η2 + 1, M5(η) = 5η − 11η3 + 7η5 − η7,

M6(η) = −5η +33η3 − 35η5 + 7η7, M7(η) = 1 − 3η2.

The asymptotic solution (4.4) is valid for the following situations: (a) ε � ω;
(b) the function ϕ(r) is doubly differentiable.

4.4. Stream function

For a stream function ψ defined as

u = −1

r

∂ψ

∂z
, v =

1

r

∂ψ

∂r
,
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Figure 3. Modes of divergent flow through a radial fracture.

the following relationship may be obtained by integration of the first relation with an
additional condition ψ |z=ϕ = 0:

ψ(r, η) =
1

4
(η3 − 3η) +

3ωRe

1120
Φ0ϕ[η7 − 7η5 + 11η3 − 5η]

− 9ω2Re2

4480

{
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[
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(
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3
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)
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6

(
η5

5
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)
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34

5

(
η7

7
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)
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4

(
η9

9
− η

)
+

7

90

(
η11
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− η

)]
+ rϕΦ2

[
− 416

1155

(
η3

3
− η

)

+
5

6

(
η5

5
− η

)
− 11

15

(
η7

7
− η

)
+

1

4

(
η9

9
− η

)

− 1

45

(
η11
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− η

)]}
− 3ω2

40
rϕΦ3(η

5 − 2η2 + η) + C + O(ω3) (4.5)

where C is an arbitrary constant.

5. Analysis of the solution for a smooth fracture
5.1. Qualitative results for a smooth fracture

For a smooth fracture, when ϕ = 1/2, the first approximation at ω → 0 of asymptotic
expansion (4.4) is equivalent to that obtained in Peube (1963), although the latter was
derived using a different method (power-value series over 1/r). Similarly to Peube
(1963), the main results following from (4.4) should be noted.

The zero term corresponds to Poiseuille flow. The next terms involve inertia effects.
The inertia forces disturb the parabolic velocity profile in such a way that velocity
increases in the median plane and decreases in the vicinity of the walls. From a critical
radius value, the near-to-wall radial velocity becomes negative, which indicates reverse
flow formation.

All the inertia effects disappear when r � rc =
√

πωRe, according to Peube (1963).
For a divergent flow directed away from the fracture centre, the pressure along r

appears non-monotonic, as seen in figure 3, which illustrates four modes of radial
divergent flow. The pressure distribution along r is marked by a local minimum at
point rmin and a local maximum at point rmax , with rmin < rmax . Between these two
points the pressure increases along the flow direction. This indicates an unstable
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Figure 4. Smooth fracture: comparison of numerical and analytical solutions.

process. Hence, any analysis of the stable laminar divergent flow is justified only
when r � rmax .

The value rmax can be estimated from the first approximation of expansion (4.4c).
Assuming ∂p/∂r =0, we obtain

rmax = 3

√
ωRe

70
= 0.359

√
ωRe.

Nevertheless, when the flow is converging, i.e. is directed towards the fracture centre,
the zero term in (4.4c) changes sign such that the pressure derivative always remains
positive. The pressure distribution is then monotonic and therefore the limitation
mentioned above can be ignored.

5.2. Comparison with a numerical solution for a smooth fracture

The following parameters have been used for the numerical analysis: Rout =0.4 m,
H = 0.008 m, Rin = 0.01 m. Numerical results obtained for a smooth fracture are
presented in figure 4.

The numerical, Poiseuille and asymptotic theoretical pressure derivatives at the
wall are presented in figure 4 for Re = 66.4. The best match between the asymptotic
solution and the numerical results is observed throughout the stable flow domain, i.e.
downstream from rmax . The shift of this point towards the outlet section when Re
increases is satisfactorily predicted by the solution obtained.

6. Analysis of a corrugated fracture: microscale flow behaviour
The solution obtained can be used both to calculate the microscale flow pattern

and to predict the averaged system behaviour.

6.1. Flow pattern

The flow pattern has been calculated based on the asymptotic solution (4.4) for a
sinusoidal corrugation given by the function

ϕ =0.5{1 + a sin (2πy)}, y =
r

ε
, (6.1)

with a new dimensionless parameter a equal to the ratio of the corrugation amplitude
at half of the mean fracture aperture.
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Figure 5. Streamlines for a sinusoidal corrugation in the zero (I), first (II) and second (III)
approximations of the asymptotic solution.

The stream function has been calculated using (4.5) in the zero, first and second
approximations. The results for Re = 70, ω = 0.01, ε = 0.1 and a =0.3 are presented
in figure 5 in the form of stream-function isolines. The flow travels from left to right,
and the upper half-domain is presented. A rather high Reynolds number is chosen in
order to ensure the formation of secondary flow. A typical secondary flow is displayed
in the form of a vortex formed between the pore wall and the separated stream. The
most exact correspondence with the true flow pattern is obtained in the second
approximation. The first approximation, although sufficiently sensitive to capture the
vortex formation, is nevertheless quantitatively different from the true pattern. The
zero approximation, which describes a flow without inertia, always produces a smooth
and symmetrical streamline pattern.

6.2. Criterion for secondary flow formation

In a fracture with oscillating but smooth walls, flow separation and vortex formation
do not necessarily occur even at very high Reynolds numbers, if the wall oscillation
amplitude is not sufficiently large. A criterion of vortex formation for a general ϕ

function describing corrugation can be obtained from the analysis of solutions (4.4).
Various approaches may be used to detect when vortex formation or flow separation

occurs. In particular, the flow is separated when the normal stress at the wall becomes
zero. In Schlichting (1968) the separation instant was associated with the annihilation
of the normal derivative of tangential velocity. We will use another approach, enabling
us to detect all types of secondary flows, i.e. the near-wall reverse flow described in
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Figure 6. Rectangular corrugation.

§ 5.1 and the vortices. It is easy to see that, due to its geometry, the radial vortex
always has points at which the velocity vector is strictly vertical. A point with zero
horizontal velocity is belongs to a velocity profile which has an inverse flow zone.
Both types of secondary flows may be detected by the existence of zero points for the
velocity u.

For our purpose, the first approximation is sufficient, because, as has been noted,
it is sensitive to vortex formation, as well as to the appearance of reverse flow.

If u =0, then relation (4.4a) yields the following equation for η in the first
approximation:

0 = − 3

4rϕ
(η2 − 1) − 3ωRe

1120

Φ0(r)

r
(η2 − 1)(5 − 28η2 + 7η4)

or

η4 − 4η2 +

(
5

7
+

40

ωReϕΦ

)
= 0

which has the exact solution:

η2 = 2 −

√
23

7
− 40

ωReϕΦ
.

The value of η is between 0 and 1. Excluding the wall (which always satisfies the
requirement u =0, but is of no interest) we obtain the following inequality:

0 � 2 −

√
23

7
− 40

ωReϕΦ
< 1.

If ϕ′
r > 0 then we finally obtain

ωRe

(
ϕ′

r

r
+

ϕ

r2

)
> 14.

A high wall oscillation amplitude and a high Re are favourable to secondary flow
formation.

If the fracture is smooth (ϕ′
r ≡ 0), we obtain the following criterion for the

appearance of a near-wall inverse flow:

r <

√
ωRe

28
= 0.189

√
ωRe.

6.3. Continuity of the wall surface; rectangular and quasi-rectangular corrugation

The relationships (3.1) contain the derivatives of the function ϕ. Hence they are
not applicable to discontinuous surfaces. A typical example of such a surface is the
rectangular corrugation shown in figure 6 and defined within a single period as

ϕ =

{
1/2 − a1 when 0 < y�y∗

1/2 + a2 when y∗ <y�1, y = r/ε,
(6.2)
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where H (a1 + a2) is the amplitude of oscillations and y∗ is the relative length of
the narrow section within a period. These parameters are related by the formula
a2 = a1y

∗/(1 − y∗), which results from condition 〈ϕ〉 = 1/2.
It is very useful to analyse rectangular corrugation as in many cases it provides the

analytical formulae for the macroscale flow parameters.
In order to obtain closed and simple analytical relations for macroscale parameters

such as permeability, we introduce a so-called ‘quasi-rectangular corrugation’. This
type of surface can be obtained from the rectangular surface by eliminating the
discontinuity points. This means that in definition (6.2) of the function ϕ(r), non-
strict inequalities are replaced by strict inequalities. At the discontinuity points, the
function ϕ(r) is not defined. At all the points where the function ϕ(r) is defined, its
derivative is zero. In other words, the true fracture with rectangular corrugation is
approximately replaced by an artificial combination of two smooth fractures. One of
them (the narrowest) has a uniform aperture equal to the minimal aperture of the
true fracture, H (1/2 − a1), while the second (the largest) has the maximal aperture
H (1/2 + a2). The joints between these two fractures are not defined. This combination
of two smooth fractures can be examined as a natural bound of the true corrugated
fracture.

Taking into account that the fluid flow across the fracture is basically determined
by the narrowest section, it is natural to expect that the true behaviour will be closer
to that of the narrowest fracture. Therefore we can a priori attempt to improve the
representation by using the mean smooth fracture, whose aperture is equal to the
mean aperture of the real fracture, instead of the largest fracture.

At the same time, it is clear that the formal elimination of the discontinuity points
may seriously modify the streamline pattern in some cases, especially in the case of
high inertia effects. The application of the quasi-rectangular model is thus limited
and is therefore not recommended at very high Reynolds numbers.

In the next sections we will analyse various examples illustrating to what extent
quasi-rectangular corrugation can be used as an approximate model of true undulating
fractures.

6.4. Comparison with a numerical solution for a corrugated fracture

The example of a rectangular corrugation was selected to compare the solutions
obtained with those from numerical data. The analytical data have been obtained
for the quasi-rectangular corrugation described above, whilst the numerical results
presented below concern the true rectangular corrugation.

For numerical calculations we used the following values: Rout = 0.4 m, H = 0.003 m,
Rin = 0.01 m, l = 0.05 m, H (a1 + a2) = 0.005 m, y∗l = 0.045 m. Then the dimensionless
flow parameters are: ω = 0.0075, ε = 0.125, y∗ = 0.9, a1 = 0.167, a2 = 1.5. The
Reynolds number was fixed at Re = 1.66, which corresponds to a case where the
inertia effects are not negligible but are within the limits of validity of the quasi-
rectangular approximation for wall corrugation. Results of the comparison with
numerical data are shown in figure 7.

In figure 7 the pressure derivative at the fracture wall (z =ϕ(r)) is shown as a
function of the radius. The solid oscillating curve corresponds to the numerical
simulation of the Navier–Stokes flow through the corrugated fracture. To make a
comparison, two dashed lines are added, which represent the asymptotic solution
obtained for two smooth fractures forming the representation mentioned above. The
aperture of the fracture described by curve 1 is equal to that of the corrugated fracture
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Figure 7. Pressure gradient along r: numerical data (undulating curve) and analytical
representation formed by the smooth fracture with minimal aperture (curve 1) and the smooth
fracture with mean aperture (curve 2).

in the narrowest sections (ϕ = 1/2 − a1). The aperture of the smooth fracture at curve
2 is equal to the mean aperture of the corrugated fracture (ϕ =1/2).

As can be seen, curve 1 smooths the oscillating curve well. From this point of view,
the smooth fracture with the aperture equal to the thickness of the narrowest sections
can be approximately considered as being the equivalent one.

7. Analysis of the averaged behaviour
7.1. Macroscale equation of flow

Double averaging of solution (4.4) in the sense of (3.2) yields the following macroscale
flow model through a corrugated radial fracture:

d

dr
〈〈p〉〉 = − 3

2r

[〈
1

ϕ3

〉
+

2ω2

5ε2

〈
ϕ′′

yy

ϕ2
+

(ϕ′
y)

2

ϕ3

〉]
+

27ωRe

70

1

r3

〈
1

ϕ2

〉

+
39ω2Re2

20790r3

[
1

ε2

〈
4(ϕ′

y)
2

ϕ3
−

3ϕ′′
yy

ϕ2

〉
+

10

r2

〈
1

ϕ

〉]
, (7.1)

〈〈v〉〉 = 0, 〈〈u〉〉 =
1

2r

〈
1

ϕ

〉
.

Equation (7.1) may be rewritten in dimensional form:

d

dR
〈〈P 〉〉 = − µ

Kef
〈〈U〉〉 +

ρβef

R
〈〈U〉〉2

+
ρ2γ ef

µ
〈〈U〉〉3

(7.2)

where the three effective parameters Kef, γ ef and βef are analysed below (see § 7.4,
formulae (7.4) and (7.7)).

The averaged equation obtained can be applied to those types of corrugations
where the square of the derivative of function ϕ(y) is integrable. In particular, a
continuous piecewise differentiable function ϕ(y) satisfies this requirement.
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7.2. Physical meaning of the averaged equation

First, each term on the right-hand side of (7.1) or (7.2) is in some way subjected
to the influence of wall corrugation. However, this influence manifests itself in two
different forms. The terms that contain parameter ε are generated by the corrugation,
such that in a smooth fracture these terms do not exist. Other terms are non-zero in
a smooth case but change their value under the influence of corrugation.

Secondly, it is necessary to distinguish three physical mechanisms that are able to
cause an energy or pressure loss: viscous dissipation, the pure inertia effect, and the
cross viscous–inertia effect. The pure inertia effect constitutes an irreversible pressure
loss due to flow acceleration or deceleration. The cross viscous–inertia effect consists
of a supplementary viscous dissipation caused by a deformation of the streamline
pattern by the inertia forces.

In a radial fracture the inertia effects have a double origin: the fracture
macrogeometry determines a radial deceleration and an averaged velocity variation
as 1/R (‘global inertia effects’), while the wall corrugation determines small-scale
oscillations of the velocity vector (‘local inertia effects’). The same double origin is
appropriate to the cross viscous–inertia terms. The fracture macrogeometry entails a
streamline deformation caused by the inertia forces and is described in § 5.1, which is
exhibited in the form of a reverse flow. This streamline pattern deformation modifies
viscous dissipation, which is called the ‘global cross viscous–inertia effect’. The wall
corrugation provokes an additional deformation of the streamline pattern, including
streamline separation and vortex formation, described in § 6.1. This local streamline
deformation is the ‘local cross viscous–inertia effect’.

This classification of viscous and inertia effects enables us to explain the physical
meaning of the averaged model.

(i) The first term in (7.1) describes the purely viscous dissipation. The main part
of this term, which is of order 1, corresponds to the Poiseuille flow in each section
(lubrication approximation). The part of order ω2/ε2, which, moreover, is proportional
to the mean derivative of the corrugation function ϕ, describes the additional viscous
dissipation caused by a more complicated arrangement of the streamlines, especially
within the transition zones between the narrow and wide sections.

(ii) The second term, which is of order ωRe, describes the pure inertia effects caused
by an irreversible energy loss due to flow acceleration/deceleration. As this term does
not contain parameter ε, the averaged inertia effect is ‘global’, i.e. is caused only
by the variation in mean flow velocity along the radius. It does not depend on the
derivative ϕ′

y . Hence it is not zero even in a smooth fracture.
The local pure inertia effect is zero, or in other words, the heterogeneity of

the medium geometry (wall corrugation) does not produce the Forchheimer term,
quadratic with respect to velocity. This type of disappearance of the pure inertia
effects in the averaged model is described in Panfilova, Buès & Panfilov (2002) and
Panfilov et al. (2003). The reason for this annihilation lies in the fact that the energy
loss during flow acceleration or deceleration is not irreversible. The kinetic energy is
not lost but is simply transformed into potential energy. If, in addition, the velocity
is periodic, then all flow acceleration is balanced by the decelerations, and the total
variation in kinetic energy is strictly zero.

(iii) The third term, of order ω2Re2/ε2, is the cross viscous–inertia effect. This is
an increment of the viscous dissipation caused by a deformation of the streamline
pattern, which, in turn, is caused by inertia forces. It contains two parts. The first part
is the local cross-term caused by the ‘local inertia forces’. It is equal to zero when the
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Figure 8. Pressure distribution along r: numerical data for pressure averaged over the
fracture aperture (curve 1) and analytical twice-averaged pressure (curve 2).

fracture is smooth (the derivative ϕ′
y is zero). The second part is a result of global

inertia forces.
The ratio between the cross inertia–viscous effects and the pure inertia effects is of

order ωReε2. Therefore when ω � ε2 the pure inertia effect is greater than the cross
inertia–viscous effect.

It is important to note that the pure inertia correction to Darcy’s law is quadratic
with respect to velocity, while the cross inertia–viscous correction is cubic. Therefore,
the nonlinear correction in the case of plane-parallel flow is cubic because the global
inertia effects are zero in this case.

Stable laminar radial flow in a fracture can be observed for radii greater than rmax .
Within this domain the asymptotic solution obtained is in good agreement with the
numerical data.

7.3. Comparison of the averaged model with numerical data

In a particular case of rare corrugation (see § 2.3) when ω � ε2, the terms of order
ω2/ε2 can be neglected in (7.1). The first-order approximation with respect to ω is
sufficient:

d

dr
〈〈p〉〉 = −3γ

2r

〈
1

ϕ3

〉
+

27ωRe

70r3

〈
1

ϕ2

〉
. (7.3)

This truncated model enables us to describe even the discontinuous function ϕ(y)
and the rectangular corrugation in particular.

In figure 8 the twice-averaged pressure (curve 2), calculated based on (3.2) for
Re= 1.66, is compared with the numerical pressure distribution averaged over z

(curve 1). Within the limits of the stable flow (r � rmax) the theoretical results fit the
numerical data well.

7.4. Effective fracture permeability

For a very slow movement, when it is possible for the terms of order Re and higher
to be neglected in (7.1), the macroscale model corresponds to Darcy’s law:

d

dR
〈〈P 〉〉 = − µ

Kef
〈〈U〉〉
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Figure 9. Corrugation parameter versus oscillation amplitude for a sinusoidal (solid line)
and a rectangular (dashed line) corrugation.

written in dimensional form, where P and U are dimensional pressure and velocity.
The effective permeability is defined as

Kef =
H 2

12
λ, λ=

4
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1

ϕ

〉
〈

1

ϕ3

〉
+

2
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(ω

ε

)2

〈
ϕ′′

yy

ϕ2
+

(ϕ′
y)

2

ϕ3

〉 . (7.4)

Corrugation parameter λ is a correction to the effective permeability caused by
wall oscillations. If the fracture is smooth then λ= 1. For a corrugated fracture, this
parameter depends on corrugation amplitude a, wavelength ε, fracture aperture ω

and corrugation geometry.
This parameter has been calculated for two types of corrugation: sinusoidal given

by function (6.1) and rectangular defined as

ϕ =

{
0.5(1 − a) when 0 <y � 0.5

0.5(1 + a) when 0.5 <y � 1, y = r/ε.
(7.5)

Strictly speaking, the quasi-rectangular approximation as in § 6.3 was used, such that
the wall discontinuity points were ignored. So λ for a quasi-rectangular corrugation
is defined as

λ≈ 4

〈
1

ϕ

〉/〈
1

ϕ3

〉
.

The integration can be performed in an explicit way; then

λ≈ (1 − 4a2)2

1 + 12a2
. (7.6)

As shown in (7.4), corrugation parameter λ depends on amplitude a and ratio ω/ε.
The dependence of λ on amplitude a is illustrated by figure 9.

It is seen that function λ versus a displays a rather universal behaviour which has a
small dependence on corrugation geometry and other parameters. Thus the analytical
formula (7.6) may be suggested as a universal model for the corrugation parameter.
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Figure 10. (a) Inertia parameter βef and (b) inertia–viscous parameter γ ef versus corru-
gation amplitude a in a quasi-rectangular case (dashed lines) and sinusoidal case (solid lines).

7.5. Effective inertia and inertia–viscous parameters

Two new dimensionless parameters appear in (7.2):

βef =
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 . (7.7)

Parameter βef represents a specific pressure drop along a unit length caused by
the pure inertia effect. Parameter γ ef represents a specific pressure drop along a unit
length caused by the cross inertia–viscous phenomena.

Figures 10(a) and 10(b) illustrate the behaviour of these parameters with respect
to corrugation amplitude a for a quasi-rectangular corrugation (dashed lines) and
sinusoidal (solid lines). If the corrugation amplitude is not very high, βef depends on
the amplitude only and is the same for the rectangular or for a sinusoidal surface.
Thus for a < 0.6 the inertia parameter βef, independently of corrugation geometry,
may be calculated by the analytical formula resulting from the quasi-rectangular case:

βef =
54

35
(1 + a2).

In the case of γ ef, the quasi-rectangular approximation is not valid, as seen in
figure 10(b). However this relation can be used as a basis to develop a good semi-
empirical correlation. The following high-precision approximation was found:〈
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yy
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〉/〈
1

ϕ

〉3

= −9.9a2.

The following, in practice exact, relation can thus be used to calculate γ ef for any
corrugation geometry:

γ ef =
156ω2

13475

[
5

2r2

(
1 − a2

)2 − 9.9

ε2
a2

]
. (7.8)
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7.6. Negative inertia–viscous dissipation increment

In (7.8), the left-hand term in the square brackets is responsible for the global inertia–
viscous effect, with the same meaning as § 7.2, whereas the right-hand term is caused
by the local phenomena. As has been seen, the sign of these terms is opposite. This
means that the global streamline deformation by inertia forces always increases the
total viscous dissipation, whereas the local streamline deformation is such that total
viscous dissipation decreases. Indeed, the inertia forces tend, first, to straighten the
streamlines and to reduce the friction trajectory of each liquid particle. The viscous
dissipation should therefore decrease.

This general tendency can however be significantly modified by the formation of
secondary flows. In the case of global inertia forces, they generate a narrow near-wall
zone of secondary flow, which is opposite to the main jet. The friction of a jet against
a surface moving in the opposite direction is higher than the friction against a fixed
or non-moving surface. As a result, total viscous dissipation increases.

In a slot with corrugated walls, the reverse jets exist in a rather narrow interval
of the Reynolds numbers, rapidly being suppressed by local secondary flows. The
structure of a local secondary flow is strongly distinct: this is a vortex formed in a
zone behind the separation jet. It is well known that a vortex makes practically no
contribution to the total viscous dissipation, as the flow velocity therein is very small.
These zones may be considered as stagnant. Thus, the local secondary flow cannot
reverse the viscous dissipation decrease.

For a high amplitude of wall corrugation, the local inertia forces become somewhat
greater than global inertia. Therefore the total viscous dissipation decreases and the
inertia–viscous parameter becomes negative. Note that the negative viscous–inertia
dissipation increment is equivalent to a reduction in effective permeability.

8. Conclusions
For a radial, steady-state Navier–Stokes flow in a thin cylindrical fracture with

periodically corrugated walls, the asymptotic analytical solution is obtained in the
limit ω → 0, where ω is the mean fracture aperture. The case of a ‘rare’ corrugation
is only examined when the fracture aperture is much smaller than the corrugation
period. This solution is shown to be in good agreement with the numerical simulation
for the Navier–Stokes equations, as in the case of a smooth fracture, as well as in
the case of a fracture with a rectangular corrugation which is characterized by a
discontinuous function describing the corrugation form. In particular, the solution
obtained describes the secondary flow formation and provides rigorous criteria for
the appearance of these phenomena.

The macroscopic flow equation is derived by averaging the asymptotic solution both
over the fracture aperture and over the wall corrugation. This equation represents
a generalized Darcy’s law, including two additional nonlinear terms, quadratic and
cubic with respect to the mean flow velocity. The quadratic term describes the pure
inertia effect, caused by an irreversible loss of kinetic energy due to flow acceleration.
The cubic term corresponds to a cross inertia–viscous effect, which consists of an
additive viscous dissipation caused by the streamline deformation due to inertia forces.

The inertia–viscous term has a double internal structure, as the streamlines are
deformed by inertia forces with two distinct physical origins: ‘global forces’ caused
only by the radial macro-geometry of the domain, and ‘local forces’ caused only by
the wall oscillations. The global forces cause the deformation of a Poiseuille velocity
profile until the appearance of a reverse flow in the near-wall domain. The local
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inertia forces produce an additional streamline deformation including the effects of
flow separation and vortex formation.

In contrast, the pure inertia term is caused only by the global inertia forces. The
averaged action of the local inertia forces is zero. The explanation of this effect is
suggested in § 7.2.

The suggested macroscale model is characterized by three effective parameters:
fracture permeability, the pure inertia parameter and the cross inertia–viscous
parameter. All the parameters are a function of the corrugation amplitude and
the ratio between the fracture aperture and corrugation length. These functions
are calculated for a rectangular and a sinusoidal corrugation. Some approximate
analytical formulae were obtained to calculate the effective parameters based on the
quasi-rectangular approximation for wall corrugation.

As the inertia forces tend to straighten the flow streamlines, reducing the viscous
dissipation, the inertia–viscous parameter should be negative. However, the formation
of secondary flows, such as reverse jets, may invert this tendency and may thus change
the sign of the inertia–viscous parameter.
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